

New Solar Homes Partnership

Technical Procedures
Eligible Systems and Specifications
Expected Performance-Based Incentives

Bill Pennington

Manager, Buildings and Appliances Office,
Efficiency, Renewables and Demand Analysis Division

Technical Development Team

- California Energy Commission
 - Bill Pennington
 - Smita Gupta
- 2008 Title 24 Update Consultants
 - Charles Eley
 - Bruce Wilcox
- PV software tool contractor
 - Dr. William Beckman,
 University of Wisconsin Solar Energy Lab
- PV technical advisors KEMA contractors
 - Bill Brooks
 - Chuck Whitaker
 - Tom Hoff
 - Jeff Newmiller

Related IEPR Policy Principles

- Promote high performing systems that result in cost-effective public funding (in terms of long-term energy generation per \$ of incentives)
- Target PV installations to climate zones with high peak demand for air conditioning and where PVs will have most benefit to the grid
- Establish a performance-based incentive structure
- Leverage energy efficiency improvements while deploying photovoltaics, integrating high energy efficiency and considering time-of-use energy
- Incorporate PVs into the 2008 Building Energy Efficiency Standards

Extend Building Standards Methods

- Use the performance based compliance software approach of the building energy standards to impact performance and optimize design and installation of PV systems
- Use third party inspection for PV systems similar to the quality installation inspection of energy efficiency features to avoid construction defects, builder liability and customer satisfaction
- Use a component certification program approach similar to product certification programs for appliances, windows (NFRC), cool roof products (CRRC)
- Use the Commission adopted approach of TDV Energy to place energy efficiency and generation priority on hot, high demand, high growth, high system cost areas

PV Performance Calculations

Calculator Interface

Choose from list of CEC						
certified PV modules (tested	PV Modu	le	ABC Module	ABC Module-100 Series		
input values)	Mounting	→	Building Integ	grated	*	
	Numbero	fModulesin	Series	8		
Mounting method affects the temperature of the PV module	Number of Parallel Strings			3		
	Slope			22.5		
Choose from list of CEC ——certified inverters (tested input values)	Azimuth			180		
	inveiter		XYZ Inverter-	100 Series	T	
	City		Sacramento	CO	T	
	Simulation	n Period	Annual		T	
Choose a city from Standards	✓ Shadir	ng				
list (C7 weather file)	Orientation	Distance to	Obstruction(ft)	Height of Obstruction above PV Moduels (ft)	Altitude Angle from Horizonta	
/	ENE					
Check this box if the PV array is partially shaded. When checked user will enter more data.	E					
	ESE					
	SE					
	SSE					
	S					
	SSW					
	sw					
	wsw					
	W					
	WNW					

Results						
kWh Production TDV Production						
January						
Febuary						
March						
April						
May						
June						
July						
August						
September						
October						
November						
December						
Annual						

Example results

The "No Shading" Criterion

 Anything higher than the PV array shall be located a distance from the array of at least two times the height difference, i.e. D > 2*H

• Shading of 1- story home by next door 2 – story home

Tree shading – expected mature height of builder planted trees

Utility poles excepted if they are located at least 30 ft from the array

Validation of model

48 - GE BIPV 55W each panels SMA 2500 inverter

Certification

- PV Module
 - Inputs to performance calculator to be certified
 (V_{mp}, I_{mp}, V_{oc}, I_{sc}, temperature coefficients at STC conditions and the installed NOCT at specified conditions)
 - Values now are routinely available through manufacturers (but not certified)
 - Possible Commission-approved administration mechanism like NFRC and CRRC (Powermark or other)
 - Specify tests (ASTM E 1036) and laboratory verification requirements
- Inverter Sandia test protocol
 - Current ERP eligibility criteria
 - Use the tested values (efficiency at various operation conditions of voltage and power) in inverter modeling

Field Verification Process

- Same process used for field verification for energy efficiency for Title 24, New Construction programs, Energy Star, Federal Tax Credits
- Installer tests and certifies every system
- HERS raters verify and test a sample of systems
 - under contract to the builders (value-added quality control service) and
 - under the oversight of HERS providers (CHEERS, CalCERTS, CBPCA – over 1,000 HERS raters statewide)
- Commission develops field verification protocols (appendices to Guidebook and Standards)
- Commission insures that HERS Providers develop training curriculum to train HERS Raters

Field Verification Tasks

Visual Inspection

- Verify that installed equipment (modules and inverter) are the same as specified
- Verify that the installation (orientation, tilt, etc.) is the same as specified

Shading Evaluation

- Check for "no shading" criterion
- Check for shading obstructions included in the calculations
- Check for trees expected to shade modules at maturity

Performance Verification

- Measure solar irradiation and ambient temperature
- Look up the expected output for the measured conditions on the table generated by the CEC-PV software
- Verify AC output displayed on the inverter is as expected

Expected AC output for verification

Solar	Ambient Temperature										
Irradiance (W/m²)	Centigrade	-1	4	10	16	21	27	32	38	49	60
	Farenheit	30	40	50	60	70	80	90	100	120	140
1300)	2.60	2.60	2.60	2.60	2.60	2.45	2.11	1.89	1.64	1.39
1250)	2.60	2.60	2.60	2.60	2.60	2.45	2.04	1.85	1.50	1.34
1200)	2.60	2.60	2.60	2.60	2.60	2.44	1.98	1.82	1.47	1.32
1150)	2.60	2.60	2.60	2.60	2.60	2.44	1.91	1.80	1.46	1.29
1100)	2.50	2.50	2.50	2.50	2.50	2.32	1.85	1.77	1.45	1.27
1050)	2.50	2.50	2.50	2.50	2.50	2.19	1.78	1.75	1.44	1.24
1000)	2.50	2.50	2.50	2.50	2.50	2.07	1.72	1.71	1.43	1.22
950)	2.50	2.45	2.40	2.35	2.30	1.94	1.65	1.70	1.42	1.19
900)	2.40	2.40	2.30	2.20	2.10	1.82	1.60	1.60	1.41	1.17
850)	2.20	1.98	1.95	1.90	1.90	1.70	1.50	1.50	1.40	1.15
800)	2.00	1.95	1.88	1.78	1.70	1.55	1.45	1.40	1.30	1.10
750)	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.30	1.20	1.10

TDV (Time Dependent Valued) Energy

TDV (Time Dependent Valued) Energy

- Adopted by the Commission for the 2005 Building Energy Efficiency Standards (TDV also used by the CPUC for 2006-08 energy efficiency program planning)
- Places time-of-use weighting on energy during peak periods
- Accounts for variation in marginal electricity generation, transmission and distribution (T&D) costs by region
- California's sunniest climates correspond to climates with hottest summers, highest peak demand, greatest housing starts;

Production By Climate Zone

Expected Performance Based Incentives (EPBI)

- Incentives Based on PV Performance Calculator with TDV Place Priority on High production in sunnier climates
 - Higher incentives in high peak load, high growth, high T&D cost areas
 - Higher incentives for efficient PV modules and inverters
 - Lower incentives for partially shaded arrays, poor orientation or tilt
- Commission defines reference system/location
- Performance calculator used to determine expected performance of actual system/location and compare to the reference to determine the incentive

CALIFORNIA ENERGY COMMISSION

Reference PV system and parameters

Consumer and Builder information

- Verification protocols would be used by builders as bid specifications for installers
- Expected performance table to builder and home owner
- Guidelines for proper tree planting in solar subdivisions to home owner and builder (could be CC&R requirement for subdivisions)
- Commission makes training available on all of this information
- Provides videos for installers and HFRS Raters